If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+500
We move all terms to the left:
(H)-(-16H^2+500)=0
We get rid of parentheses
16H^2+H-500=0
a = 16; b = 1; c = -500;
Δ = b2-4ac
Δ = 12-4·16·(-500)
Δ = 32001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{32001}}{2*16}=\frac{-1-\sqrt{32001}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{32001}}{2*16}=\frac{-1+\sqrt{32001}}{32} $
| 3x^2+4=-71 | | 5(6.2-0.4y)+2y=31 | | 8(2x+3+2)=-4+148 | | y=150(1.1)^8 | | 15=p-7 | | -6f+2f+9=-2f+4-f | | 225=5c | | y=150(1.1)^7 | | 6x^2+6=390 | | 4(3p+3)=10 | | y=150(1.1)^6 | | 12x+13=31 | | 7x+4=5+3x+-1 | | y=150(1.1)^5 | | 2a+50=3a+15 | | -f-8=4f+8 | | H(t)=-4.9^2t+2t+500 | | y=150(1.1)^4 | | 2x^2=2025 | | 3x+37=53 | | 6-4.2x=-(5.1x-5)+x | | 3x=x+15=x | | y=150(1.1)^3 | | -13=c/12 | | 10=2c-4c | | y=150(1.1)^2 | | 6-4.2x=-(5.1x-5)+5 | | 10d-3=17 | | y=150(1.1)^1 | | d^2=-81 | | 10m+2.4=7 | | H(t)=-4.9^2t+500 |